
Self-learning Agents for Spatial Synthesis

Pedro Veloso and Ramesh Krishnamurti

Abstract

Over the last decades, a vast repertoire of computational
methods has been employed for the synthesis of spatial
configuration. Many of these techniques, such as the
long-standing black-box optimization or the recent gen-
erative adversarial networks, enable a quick exploration
of the design solutions based on destructive operations,
but encapsulate the generative process, promoting dis-
ruptive turn-taking between computer and designer. In
contrast, techniques based on agents naturally provide
partial design information and enable fine-grained inter-
action. However, existing agent-based models originate
from non-architectural problems, so it is not straightfor-
ward to adapt them for spatial design. To address this gap,
we present a method to create custom spatial agents that
can satisfy architectural requirements. While the method
can be adapted to a diversity of representations and goals,
we focus on a proof of concept where agents control
spatial partitions (represented as polyominoes with no
holes) and interact in an environment represented as a
grid. The agents learn how to satisfy its individual (shape,
area, etc.) and collective goals (adjacency) using multi-
agent deep reinforcement learning. In this paper, we focus
on the formulation of the environment, agents, and goals
and present simulations of trained agents to illustrate
possible variations.

Keywords

Space planning � Interactive generative systems �
Multi-agent deep reinforcement learning

1 Introduction

Computational generative systems are constructs that, given
a proper input of information and a program, can automat-
ically synthesize design solutions. Early computational
generative systems were developed to automate the gener-
ation of architectural layout, which at the time was called
spatial synthesis or space planning [1, 2]. In this context,
generative systems were largely influenced by two fields
concerned with problem-solving and decision-making—op-
erations research and symbolic artificial intelligence—and
their respective methods: optimization and search [1, 3–5].

Following the incorporation of black-box methods, which
enabled the solution of general design problems with custom
objectives and constraints, optimization became the domi-
nant category for generative systems. For example, genetic
algorithms became a widespread technique in the recent
debate on generative systems [6–12] and designers today
have access to many black-box optimization algorithms
encapsulated in plug-ins for CAD software. In this context,
the combination of parametric modeling and optimization to
explore design alternatives became a mainstream generative
workflow [13].

However, the availability of recent computational tech-
niques, such as agent-based modeling and deep learning,
provides an opportunity to research and investigate novel
approaches to generative systems in order to support dif-
ferent aspects of spatial exploration.

1.1 Interactive Generative Workflows

In design theory, the critical engagement and circular rea-
soning of designers supported by direct interaction with the
design media are considered central elements of design
ideation [14–19]. Particularly in the early stages of design,
the exploration of design alternatives supports not only the
discovery of provisory solutions but also the reformulation

P. Veloso (&) � R. Krishnamurti
Carnegie Mellon University, Pittsburgh, PA 15213, USA
e-mail: pedroveloso13@gmail.com

R. Krishnamurti
e-mail: ramesh@andrew.cmu.edu

© The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG 2021
S. Eloy et al. (eds.), Formal Methods in Architecture, Advances in Science, Technology & Innovation,
https://doi.org/10.1007/978-3-030-57509-0_24

265

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-57509-0_24&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-57509-0_24&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-57509-0_24&domain=pdf
mailto:pedroveloso13@gmail.com
mailto:ramesh@andrew.cmu.edu
https://doi.org/10.1007/978-3-030-57509-0_24

of the design problem itself [17, 20, 21]. Interaction with the
partial states of design representation during the synthesis is
important for acquiring knowledge about the problem,
imposing design biases, and to support intuitive behaviors
such as the leap of insight [22].

However, a large part of the generative techniques relies
on strong assumptions about the problem and, consequently,
focuses on the process of synthesizing solutions. For
example, black-box optimization uses custom strategies to
navigate in the parameter space in order to converge to
optimal solutions and GANs learn a function that can gen-
erate solutions like the ones existing in the dataset.

The consequence of the focus on the final solution is that
these techniques often adopt destructive procedures and
promote a human-computer interaction based on disruptive
turn-taking—i.e., the designer changes the input, then the
algorithm executes the synthesis and displays the results as
the output. Even in the cases where this is alleviated by some
form of interface that partially executes the algorithm, the
temporal domain and the repertoire of actions available for
the designer are still distinct from the ones of generative
procedures.

In this work, we switch the focus of generative systems
from automatic generation of design solution to the explo-
ration of design behavior during the generation of partial
solutions. The motivation is to incentivize important ele-
ments of early and open-ended design exploration by
experts, such as the understanding of the consequences of
actions over time and the visualization of partial design
representations in formation. We intend to enable the
designer and the generator to act together on the same design
representation over time, which is intrinsic to modeling
paradigms that build the solution step-by-step, such as
rule-based and agent-based models.

In this research, we focus on agent-based models, because
they enable the construction of different parts of the repre-
sentation in parallel, which results in partial states with more
information and, consequently, more opportunities for direct
and fine-grained design interactions.

1.2 Multi-agent Space Planning

It is important to be accurate with respect to the term ‘agent.’
In AI, the term agent is used generally to refer to a construct
that, immersed in an environment, uses its program to map
percept sequences to actions, in order to solve a certain task
rationally [23]. Depending on the task environment, multiple
interactive agents can be designed to cooperate, coordinate,
and negotiate to achieve a certain goal, forming a multi-
agent system (MAS).

Another important referent is agent-based modeling
(ABM), where an agent is a unit of representation in the

computational modeling of complex systems. Multiple
computational agents map percepts to actions, interacting
with each other in a shared environment and developing
patterns or behaviors that are not necessarily predictable
from the perspective of the individual [24]. ABM relies on
simulation and fine-grained interactions between agent,
environment, and the user to represent complex processes
that unfold over time.

We coined the term multi-agent space planning [25] to
designate the generative systems based on the simulation of
agents that decide how space should be shaped, occupied, or
partitioned. In this context, an agent is a spatial entity with
local control, interweaving individual perception and action
to shape a specific spatial unit. The ‘environment’ compre-
hends elements of the space that are independent of the
agents. It mediates the relation between the agents
(agent-agent interaction), provides global information for the
agents (agent-environment interaction), and potentially acts
as a game board for designers (meta agent-agent interaction).
During a simulation, the agents receive signals from the
environment, neighboring agents, or even the designer and
must make decisions in order to change the space
accordingly.

1.3 Gap in Multi-agent Space Planning

Most of existing agent-based models for spatial synthesis
rely on expert knowledge in the form of heuristics or on the
adaption of existing models to define how the agent should
interact in the environment. This repertoire of methods for
interactive spatial synthesis includes swarm algorithms
(flocking and pheromone navigation), cellular automata,
reaction-diffusion, and physics simulation [25, 26].

Cellular automata (CA) enable the emergence of patterns
and have been successfully applied to conceptual form
generation, urban morphology [27], and even to building
design [28], but the cell-based computation imposes strict
restrictions for the satisfaction of architectural requirements.
Physics simulation is a more general technique that concil-
iates simple control with intuitive interaction and can be
adapted for different spatial problems and objectives. How-
ever, physics-based agents are reactive agents that approxi-
mately follow laws of physics. They do not have any
sophisticated policy to manage spatial conflicts. Bio-inspired
models such as swarm algorithms simulate exogenous phe-
nomena (social navigation) in which the units can move and
interact in space. While they enable the incorporation of
some architectural requirements, such as area or adjacency, it
is usually hard to adapt them to produce conventional
architectural forms or satisfy additional requirements.

An alternative to conciliate multiple architectural goals is
to hybridize agent-based models with conventional methods,

266 P. Veloso and R. Krishnamurti

such as heuristics or black-box optimization, for the initial-
ization or the refinement of the global solution. The down-
side of this hybridization is that it imposes discontinuity in
the generation procedure, limiting the opportunities of direct
interaction with the spatial solution.

Overall, the challenge for spatial synthesis with agent-
based models is twofold: to develop control strategies that
incorporate specific architectural requirements and to pre-
serve the fine granularity of the simulation.

1.4 Spatial Synthesis with Self-learning Agents

Reinforcement learning (RL) is a branch of machine learning
that addresses the control problem. It is a viable alternative
to support domain-specific agents and to preserve
fine-grained interaction in spatial synthesis. The goal in RL
is not simply computing good trajectories from a given
initial state, which could be addressed by methods such as
search or optimization. With a proper RL algorithm, the
spatial agents can learn how to build spaces in real-time and
from varied states.

In CAAD, RL has been recently applied to experiments
related to intelligent adaptive building control [29], auton-
omous robots [30], fire egress evaluation [31], and machine
feedback [32]. In the field of spatial synthesis, RL has been
adopted for automatic decision-making with shape gram-
mars [33]. Specifically for multi-agent space planning, our
literature review [25] identified one experiment with learning
agents. In this example [34], teams of agents try to create
large clusters of building blocks on the same grid. While this
experiment is motivated by recent achievements in the field
of RL, in practice, it uses a natural selection mechanism to
improve the policies of each competing group of agents
between episodes.

Through the proof of concept in this paper, we describe
an instance of our method in which custom spatial agents
can learn sophisticated policies to conciliate the satisfaction
of architectural requirements and the fine-grained interac-
tion. The agents interact in an environment represented as a
square grid by controlling a spatial partition. Both the rep-
resentation of the space and of the agents’ action space and
goals are defined to take advantage of the properties of the
grid. The designer provides the spatial objectives (adjacency,
shape, area, etc.), and the agents learn how to behave using
reinforcement learning. Particularly, we use custom RL
techniques based on deep learning for the multi-agent setting
—which is referred to as multi-agent deep reinforcement
learning (MADRL) [35].

This proof of concept is part of the first author’s larger
doctoral research objective. In this paper, we focus on the
formulation of the environment, agents, and goals and we
will present simulations of trained agents to illustrate it. The

learning algorithms and interaction with designers will be
presented in future articles.

2 Development

2.1 Grids as Representation of Space
and Information

In this proof of concept, we opted to use the square grid as a
diagrammatic representation of architectural space (envi-
ronment and agents). It is a representation that has been
widely adopted in the early days of space planning [1] and in
the development of recent agent-based models [34, 36–38].
The grid is a very flexible representation that can:

• Simplify spatial queries (neighborhood, adjacency, dis-
tance, etc.)

• Structure data discretely and spatially, supporting efficient
computer vision, machine learning, and spatial analysis
techniques.

• Provide support for an architecture based on an ensemble
of discrete entities that encapsulate contextual design
information.

• Be extended to 3D version (voxel grid).
• Enable control over multiple resolutions, providing dif-

ferent levels of complexity for design and the grain res-
olution of the agent.

• Discretize different geometric entities in a homogeneous
representation, which supports both conventional room
shapes (rectangles, L-shapes, U-shapes, T-shapes, etc.),
but also unconventional and irregular shapes (see Fig. 1).

There are, however, disadvantages to using square grids
in that that they are anisotropic—i.e., they bias the repre-
sentation and operations by the horizontal and vertical axes.
Additionally, they present a tradeoff between shape infor-
mation and the design space. High resolution enables com-
plex forms but results in a very large space for exploration.
Low resolution simplifies the design space but imposes a
considerable loss of shape information.

2.2 Spatial Representation of Environment
and Agents

Information is stored in multidimensional arrays. For
instance, the environment is an array of shape (depthenv, w,
h). The width (w) and height (h) define the size of the grid,
and depthenv defines the number of layers of information. The
basic layer of information of the environment contains two
sets of cells: emptyenv and obstacleenv. Empty cells can be
occupied by agents while obstacles cannot (see Fig. 2—left).

Self-learning Agents for Spatial Synthesis 267

More information can be added to as additional layers,
increasing the depth of the environment.

The agent is an array with shape (depthagent, w, h), which
contains multiple layers of information. Each agent repre-
sents a specific spatial partition, such as an activity or room.
In this proof of concept, the spatial partition is a polyomino
with no holes (PnH). A polyomino is a set of grid cells that
share edges. Each PnHagent induces different types of cells
(see Fig. 3):

• adjacentagent: outside cells in the von Neumann neigh-
borhood [39] of the PnHagent.

• bridgeagent: adjacent cells that if expanded, create a hole
in the PnHagent.

• non-adjacentagent: cells outside of the von Neumann
neighborhood of the PnHagent.

• surfaceagent: internal cells that if eliminated will not create
a hole in or divide the PnHagent.

• structureagent: internal cells that if eliminated will create a
hole or divide the PnHagent.

• maskagent: square grid placed according to the centroid of
the PnHagent.

For the characterization of these cells, we opted for using
custom convolution filters to take advantage of parallel
computation.

By avoiding the existence of holes, a PnH has certain
interesting properties. For instance, it forms a polygon with
orthogonal edge boundaries and avoids containment of one
agent by another. Therefore, it can form custom diagrams of
floorplans, comprehending organizations such as tight
packing and loose packing. The shapes can approximate any

Fig. 1 Examples of real floorplans discretized in grids

Fig. 2 Left: simplified visualization of agents on the grid with obstacles. Middle: two closest neighbors (m = 2): 0:[3, 2], 1:[4, 0], 2:[0, 1], 3:[0,
2], 4:[1, 0]. Right: adjacency goals (max k = 2): 0:[1, 2], 1:[0, 4], 2:[0], 3:[], 4:[1]

Fig. 3 Row 1: simplified representation of agent; row 2: classification
of cells: structure (dark blue), surface (medium blue), and adjacent
(light blue); row 3: mask with the action space of the agent; row 4:
diagram with the legal actions for the current state of the agent; row 5:
indication of folding cells: L-folds (light blue), U-folds (dark blue); row

6: representation of ratio area/target area: the agents have the respective
(area, target area) pairs: 0: (17, 2), 1: (11, 4), 2: (15, 8), 3: (13, 16), 4:
(12, 25); row 7: representation of soft adjacency values; row 8: the
current utility of the agent represented in the internal cells of the agent.
Color scale for rows 2–8

c

268 P. Veloso and R. Krishnamurti

Self-learning Agents for Spatial Synthesis 269

polygon, such as orthogonal and non-orthogonal rectangles,
or free forms such as amoeba-like shapes (see Fig. 1). The
resulting polyominoes can be post-processed to depict bubble
diagrams or support the development of a parametric model.

Furthermore, an agent can be interpreted as a microen-
vironment by converting the PnHagent to emptyenv and
adjacentagent to obstaclesenv. This enables hierarchical rela-
tionships and the representation of different aspects of
design, such as zoning, building layout, and floorplan layout.

2.3 Action Space of Agents

The basic actions available for the agents are (1) single-cell
expansion, (2) single-cell retraction, and (3) no-action.

Notice that the cells of the action grid are not always
available for expansion or retraction. For each possible
polyomino in this grid, there will be a set of cells that will
preserve the consistency of the PnH (see Fig. 3—row 4).
The set of legal cells for the expansion and retraction of an
agent is defined as

• legal expansionagent = adjacentagent—bridgeagent—struc-
tureneighbor—obstacleenv—cells outside of maskagent.

• legal retractionagent = surfaceagent—cells outside of
maskagent.

In other words, the cells by which an agent can expand
and retract are not blocked by an obstacle of the environ-
ment, preserve the PnH-ness of all the agents, and are inside
the action grid (maskagent). It is important to notice that the
mask or action grid (see Fig. 3—row 3) has shape (waction,
haction) < (w, h). It is placed on the environment based on the
current centroid of the agent’s PnH. Therefore, as an agent
expands the PnH in a certain direction, it also moves the
centroid and, consequently, the action grid.

The basic actions are building blocks that can be com-
bined to form complex interplays such as blocking, pushing,
pulling, or attraction. For example, if the agent eliminates all
the cells of its PnH by retraction, it then can jump to any legal
cell inside the current action grid, by a single expansion. The
agent also has the option of not executing any action this turn.
In the grid representation, this is depicted as the cell to the
bottom left of the action grid (see Fig. 3—row 4).

2.4 Spatial Objectives

Our proof of concept enables the definition of a variety of
objectives. In our first experiments, we focused on simple
objectives based on neighborhood information, such as
adjacency, or strictly based on local information, such as
shape and area. Each of these objectives has an utility (f) and

Table 1 Utility (f) and spatial
(g) representations of objectives

Adjacency

f adj agentð Þ ¼
1
Kj j
P

k2K
max gadj kð Þ PnHagent

� �
ifjKj[0

1 otherwise

(

gadj agent; distmax; pð Þ ¼ distmax�clipðDTðPnHagentÞ�1;0;distmaxÞ
distmax

� �p

K is the set of desired adjacent agents
Clip constrains the values of the grid to a minimum and a maximum
distmax is the maximum L1 distance considered for adjacency
DT is a distance transform function based on L1 distance

Area

f area agentð Þ¼

areaagent

targetagent
if areaagent

targetagent
� 1

1-
areaagent-targetagent

targetagent
if areaagent

targetagent
� 2

0 otherwise

8
>><

>>:

garea agentð Þ = maskagentmin areaagent

targetagent
- 1, 1

� �

areaagent is the number of cells in the PnH of an agent
targetagent is the target number of cells for the PnH of an agent

Shape (non-folding)

f fold agentð Þ = max 1- sum(gfold agentð ÞÞ; 0� �

gfold agent, foldmaxð Þ¼ foldLðagent)
foldmax

þ 2foldU ðagent)
foldmax

foldL is a function that returns a grid with ones in the place of the L-folds
foldU is a function that returns a grid with ones in the place of the U-folds
foldmax is a parameter that restricts the number of acceptable folds

270 P. Veloso and R. Krishnamurti

a spatial representation (g) (see Fig. 3—rows 5–7 and
Table 1).

Each goal function (f) has no restriction to any analytical
form; it should return a value in the unit interval representing
the performance of the agent in a given state with respect to
a goal. Each spatial function (g) returns a layer of infor-
mation of size (w, h) with the spatial hints for the perfor-
mance of the agent with respect to the goal, which intends to
ease training and enable parameterization by the user. For
the current proof of concept, we have functions to indicate
area, smooth adjacency, and non-folding metrics (stimulates
shapes with few folds, such as rectangle, L, or U).

The utility of the agent state is based on a combination of
the selected goals, such as in a weighted average or in the
multiplication of the terms. In our experiment, we opted for
multiplying the adjacency goal by the average of the other
terms. This prevents the agent from getting stuck in local
optima based on individual goals, which are generally easier
to achieve.

2.5 Learning a Policy

In RL, the goal of the agent is to learn directly or indirectly a
policy—i.e., a mechanism that suggests actions in response
to its current state in order to maximize the performance of

its future trajectory. Learning a policy relies on the interac-
tion of the agent with the environment, which is formalized
as a Markov decision process (MDP) [40]. In our proof of
concept, the MDP consists of:

• a set of states (S): each state is defined by the agent’s
percepts, which has multiple layers with the internal and
the environmental information.

• a set of actions (A): legal cells for expansion and retrac-
tion, induced by the current PnH, plus the extra cell for
no-action.

• a set of rewards (R): each reward is a signal with the D of
the utility between consecutive states s and s’ that informs
the performance of the agent.

• a function that maps each state-action pair to the resulting
reward and state.

At each timestep, an agent can interact with the envi-
ronment by observing its current state (s) (Fig. 4) and taking
an action (a) among the available actions. As a result, the
agent moves to the next state (s′) and receives an evaluative
feedback in the form of a reward (r) from the environment
[40] (Fig. 5).

Our setting consists of multiple spatial agents taking
actions in the environment. In this case, the architectural
spaces are built in parallel, displaying partial information and

Fig. 4 Example of input state for
a single agent: array with shape
(7, 20, 20)

Self-learning Agents for Spatial Synthesis 271

enabling more opportunities for direct, fine-grained interac-
tions. The agents select the actions synchronously, which
requires an algorithm to order the execution and solve con-
flicts. The agents can share information before executing an
action, but the possible combination of actions (joint-action
space) grows exponentially with the number of agents.

To address this setting, we focus on multi-agent deep
reinforcement learning (MADRL), the specific branch of RL
that uses models, such as deep neural networks, to estimate
the values of state-action pairs (Q-values), or policies for
multiple agents. MADRL provides centralized and decen-
tralized strategies to address the problem of multiple inter-
actions and of the exponentially large joint-action space.

On one hand, interactive spatial synthesis presents some
non-conventional demands for MADRL, such as varying
number of agents, changes in the agent configuration over
the time, etc. On the other hand, the formulation of our proof
of concept tries to alleviate many of these challenges. For
example, to privilege spatial relationships and to reduce the
number of parameters in the neural networks, we represented
the problem in square grids, which enable the use of con-
volutional neural networks (CNNs). In contrast to games,
where the reward signals are typically sparse, we formulated
explicit goals that provide a reward signal for most of the
transitions.

To train the agents, we developed a custom version of the
Double Deep Q-Networks algorithm (DDQN) [41], a
model-free RL method that uses neural networks to estimate
the function Q(s, a). This function returns the Q-value—the
expected performance of the agent taking action a in state s
and, thereafter, following a certain policy. In the training
setting, we fix the number of agents and the maximum
number of adjacencies per agent. In the execution, the
trained model supports a varied number of agents and the
input layers provide parametric control.

3 Results

In this initial setting, we trained six agents with a maximum
of three adjacencies per agent in an environment with ran-
dom obstacles. The details of our learning algorithm will be
described in a future publication. In this section, we will
visually present some of the initial results with agents that
mix the learned policy with random actions.

In Fig. 6, we display 20 timesteps of the interaction of the
agents in a random environment with the same settings as in
the training. The first two rows display the initial 10 time-
steps, which show how the trajectory of the agents is easy to
grasp visually. In the following two rows, we selected every
100th timestep to show how the behavior of the agent results
in local exploration after reaching good configurations.
Additional variation can be incentivized by adding more
randomness to the policy.

In Fig. 7, we display another simulation with twelve
agents. In addition to the fact that the agents will face situ-
ations that they were not trained for, the increase in the
number of agents and connections as well as the preservation
of the same board size makes it significantly more difficult
for the agents to satisfy the adjacency and area requirements.
Still, the agents find a good configuration and try to improve
its performance with local changes, which are constrained by
the lack of empty spaces.

Our proof of concept intends to verify whether our for-
mulation and algorithm can result in an effective approxi-
mation of the state-action values (Q-values), so that, from
any state, the agents can follow a policy that explores
valuable configurations. The preliminary results are very
promising. The agents learned an effective policy for random
environments with obstacles, generalized it for a more
challenging setting, and generated variations of the

Fig. 5 Interaction between agent
and environment. The
representation of the states was
simplified for visualization

272 P. Veloso and R. Krishnamurti

arrangement in local regions of the design space. Most
importantly, they can do all these things by taking increment
steps in the environment.

4 Future Steps

In this paper, we have presented a novel framework for
interactive space planning with self-learning agents. We
describe both the formulation and our proof of concept,

which demonstrates that it is possible to teach agents how to
behave in large design spaces, addressing specific design
goals, and preserving fine-grained interaction.

Future steps of this research will address three topics:
learning, representation, and interaction. In terms of learn-
ing, we plan to investigate improvements in the learning
algorithm, alternative solutions, baselines, and forms of
evaluation. The learning algorithm and any improvements
will be described in detail in a future publication. We plan to
expand this research to the 3D setting and investigate other

Fig. 6 Simulation of six agents. The goals for the areas are: 0: 5, 1: 7, 2: 4, 3: 3, 4: 1, 5: 5. The goals for adjacencies are: 0: [2, 3, 5], 1: [4], 2: [0],
3: [0], 4: [1], 5: [0]

Self-learning Agents for Spatial Synthesis 273

forms of design representation that can be integrated into our
framework. Finally, our main motivation for developing
self-learning agents is to contribute to the development
of interactive generative systems that can support

observer-dependent and circular processes for custom design
generation. We plan to integrate the current proof of concept
with a game engine and to explore specific types of inter-
actions and strategies to navigate the design space.

Fig. 7 Simulation of twelve agents. The goals for the areas are [0: 6, 1:
8, 2: 9, 3: 6, 4: 9, 5: 2, 6: 6, 7: 2, 8: 5, 9: 8, 10: 8, 11: 8]. The goals for
adjacencies are 0: [5, 7, 9], 1: [3, 5, 8], 2: [8, 9, 10], 3: [1, 4], 4: [3, 11],

5: [0, 1, 10], 6: [8, 9, 11], 7: [0, 10, 11], 8: [1, 2, 6], 9: [0, 2, 6], 10: [2,
5, 7], 11: [4, 6, 7]

274 P. Veloso and R. Krishnamurti

Acknowledgements This research was supported in part by funding
from the Carnegie Mellon University Frank-Ratchye Fund for Art @ the
Frontier as well as a PhD scholarship granted by the Brazilian National
Council for Scientific and Technological Development (CNPq).

References

1. Mitchell, W. (1977). Computer-aided architectural design. New
York: Mason Charter.

2. Eastman, C. M. (1975). Spatial Synthesis in Computer-Aided
Building Design. New York: Elsevier Science Inc.

3. Simon, H. A. (1996). The Science of Design: Creating the
Artificial. In The Sciences of the Artificial (3rd ed.). Cambridge:
The MIT Press.

4. Henrion, M. (1978). Automatic space-planning: A postmortem?
In: In J. C. Latombe (Ed.), Artificial Intelligence and Pattern
Recognition in Computer Aided Design (pp. 175–191). New York:
North-Holland.

5. Liggett, R. S. (2000). Automated facilities layout: Past, present and
future. Automation in Construction, 9(2), 197–215.

6. Fischer, T., & Herr, C. M. (2001). Teaching generative design. In:
Proceedings of the 4th Conference on Generative Art. Milan:
Politecnico di Milano.

7. Kolarevic, B. (2005). Digital Morphogenesis. In: B. Kolarevic
(Ed.), Architecture in the digital age: Design and manufacturing
(pp. 12–28). London: Taylor & Francis.

8. Kalay, Y. E. (2004). Architecture’s New Media: Principles,
Theories, and Methods of Computer-Aided Design. Cambridge:
The MIT Press.

9. Oxman, R. (2006). Theory and design in the first digital age.
Design Studies, 27(3), 229–265. https://doi.org/10.1016/j.destud.
2005.11.002

10. Gorbman, Y. J., Yezioro, A., & Capeluto, I. G. (2009).
Computer-Based Form Generation in Architectural Design—A
Critical Review. International Journal of Architectural Comput-
ing, 7(4), 535–553. https://doi.org/10.1260/1478-0771.7.4.535

11. Vishal, S., & Gu, N. (2012). Towards an integrated generative
design framework. Design Studies, 33(2), 185–207. https://doi.org/
10.1016/j.destud.2011.06.001

12. Henrique, G. C., Bueno, E., Lenz, D., & Sardenberg, V. (2019).
Generative Systems: Interwining Physical, Digital and Biological
Processes, a case study. In: J. P. Sousa, G. C. Henriques, &
J. P. Xavier (Eds.), Architecture in the age of the 4th Industrial
Revolution: Proceedings of the 37th eCAADe and 23rd SIGraDi
Conference (Vol. 1, pp. 25–34). Porto: eCAADe-SIGraDi-FAUP.

13. Nagy, D., Lau, D., Locke, J., Stoddart, J., Villaggi, L., Wang, R.,
Zhao, D., & Benjamin, D. (2017). Project Discover: An Appli-
cation of Generative Design for Architectural Space Planning. In:
M. Turrin, B. Peters, W. O’Brien, R. Stouffs, T. Dogan (Eds.),
Proceedings of Symposium on Simulation for Architecture and
Urban Design (pp. 59–66). San Diego: Society for Computer
Simulation International.

14. Anderson, S. (1966). Problem-Solving and Problem-Worrying.
Retrieved from http://web.mit.edu/soa/www/downloads/1963-69/
TH_AALond-Lect_66.pdf

15. Schön, D. (1983). The Reflective Practitioner: How Professionals
Think In Action. New York: Basic Books.

16. Corona-Martínez, A. (2003). The Architectural Project. (A.
Corona-Martínez & M. Quantrill, Trans., M. Quantrill, Ed.).
College Station: Texas A&M University Press.

17. Cross, N. (2006). Designerly ways of knowing. London: Springer.
18. Lawson, B. (2005). How designers think: The design process

demystified (4th ed.). Amsterdam: Elsevier.

19. Gänshirt, C. (2007). Tools for ideas: Introduction to architectural
design. Basel: Birkhäuser.

20. Simon, H. A. (1977). The structure of ill-structured problems. In:
Models of discovery (pp. 304–325). Dordrecht: Springer.

21. Akin, O., Dave, B., & Pithavadian, S. (1987). Problem structuring
in architectural design. Carnegie Mellon University. https://doi.
org/10.1184/R1/6076109.v1

22. Jones, J. C. (1992). Design Methods (2nd ed.). New York: Wiley.
23. Russel, S. J., & Norvig, P. (2010). Artificial intelligence: A modern

approach (3rd ed.). Upper Saddle River: Prentice Hall.
24. Wilensky, U., & Rand, W. (2015). An Introduction to Agent-based

Modeling: modeling natural, societal, and engineered complex
systems with netlogo. Cambridge: The MIT Press.

25. Veloso, P., Rhee, J., & Krishnamurti, R. (2019). Multi-agent Space
Planning: A Literature Review (2008–2017). In J.-H. Lee (Ed.),
Hello, Culture!: Proceedings of 18th CAAD Futures Conference
(pp. 52–74). Daejeon, Korea.

26. Herr, C. M., & Ford, R. C. (2015). Adapting Cellular Automata as
Architectural Design Tools. In Emerging Experience in Past,
Present and Future of Digital Architecture: Proceedings of the
20th CAADRIA Conference (pp. 169–178). Daegu: Kyungpook
National University.

27. Koenig, R. (2011). Generating Urban Structures: a Method for
Urban Planning Supported by Multi-Agent Systems and Cellular
Automata. Przestrzen I Forma,(16), 353–376.

28. Araghi, S. K., & Stouffs, R. (2015). Exploring cellular automata
for high density residential building form generation. Automation
in Construction, 49, 152–162.

29. Smith, S. I., & Lasch, C. (2016). Machine Learning Integration for
Adaptive Building Envelopes: An Experimental Framework for
Intelligent Adaptive Control. In K. Velikov, S. Manninger, M. del
Campo, S. Ahlquist, & G. Thün (Eds.), Proceedings of the 36th
ACADIA Conference: Posthumans Frontiers (pp. 98–105). Ann
Arbor: ACADIA.

30. Hosmer, T., & Tigas, P. (2019). Deep Reinforcement Learning for
Autonomous Robotic Tensegrity. In: Ubiquity and Autonomy:
Proceedings of the 39th ACADIA Conference (pp. 16–29). Austin:
ACADIA.

31. Jabi, W., Chatzivasileiadi, A., Wardhana, N. M., Lannon, S., &
Aish, R. (2019). The synergy of non-manifold topology and
reinforcement learning for fire egress. In: Architecture in the age of
the 4th Industrial Revolution: Proceedings of the 37th eCAADE
Conference and of the 23rd SIGraDi Conference (Vol. 2, pp. 85–
94). Porto: eCAADe-SIGraDi.

32. Xu, T., Wang, D., Yang, M., You, X., & Huang, W. (2018). An
Evolving Built Environment Prototype. In: T. Fukuda, W. Huang,
P. Janssen, K. Crolla, & S. Alhadidi (Eds.), Learning, Adapting
and Prototyping: Proceedings of the 23rd CAADRIA Conference
(Vol. 2, pp. 207–215). Beijing: CAADRIA.

33. Ruiz-Montiel, M., Boned, J., Gavilanes, J., Jiménez, E., Mandow,
L., & Pérez-de-la-Cruz, J.-L. (2013). Design with shape grammars
and reinforcement learning. Advanced Engineering Informatics, 27
(2), 230–245. https://doi.org/10.1016/j.aei.2012.12.004

34. Narahara, T. (2017). Collective Construction Modeling and
Machine Learning: Potential for Architectural Design. In A. Fiora-
vanti, S. Cursi, S. Elahmar, S. Gargaro, G. Loffreda, G. Novembri,
& A. Trento (Eds.), Sharing Computational Knowledge!: Proceed-
ings of the 35th eCAADe Conference. (pp. 593–600). Rome:
eCAADe.

35. Nguyen, T. T., Nguyen, N. D., & Nahavandi, S. (2018). Deep
Reinforcement Learning for Multi-Agent Systems: A Review of
Challenges, Solutions and Applications. arXiv:1812.11794 [cs,
stat]. Retrieved from http://arxiv.org/abs/1812.11794

36. Meyboom, A., Reeves, D. (2013). Stigmergic Space.
In P. Beesley, M. Stacey, & O. Khan, (Eds.), Adaptive

Self-learning Agents for Spatial Synthesis 275

https://doi.org/10.1016/j.destud.2005.11.002
https://doi.org/10.1016/j.destud.2005.11.002
https://doi.org/10.1260/1478-0771.7.4.535
https://doi.org/10.1016/j.destud.2011.06.001
https://doi.org/10.1016/j.destud.2011.06.001
http://web.mit.edu/soa/www/downloads/1963-69/TH_AALond-Lect_66.pdf
http://web.mit.edu/soa/www/downloads/1963-69/TH_AALond-Lect_66.pdf
https://doi.org/10.1184/R1/6076109.v1
https://doi.org/10.1184/R1/6076109.v1
https://doi.org/10.1016/j.aei.2012.12.004
http://arxiv.org/abs/1812.11794

Architecture: Proceedings of the 33rd ACADIA Conference
(pp. 200–206). Toronto: Riverside Architectural Press.

37. Fernando, R. (2014). Space Planning and Preliminary Design Using
Artificial Life. In: N. Gu, S. Watanabe, H. Erhan, M. H. Haeusler,
W. Huang, & R. Sosa, (Eds.), Rethinking Comprehensive Design:
Speculative Counterculture: Proceedings of the 19th CAADRIA
Conference (pp. 657–666). Hong Kong: CAADRIA.

38. Guo, Z., & Li, B. (2017). Evolutionary approach for spatial
architecture layout design enhanced by an agent-based topology
finding system. Frontiers of Architectural Research, 6(1), 53–62.
https://doi.org/10.1016/j.foar.2016.11.003

39. Weisstein, E. W. (n.d.). von Neumann Neighborhood. MathWorld
-A Wolfram Web Resource. Retrieved from https://mathworld.
wolfram.com/vonNeumannNeighborhood.html

40. Sutton, R. S., & Barto, A. G. (2018). Reinforcement learning: An
introduction (2nd ed.). Cambridge: The MIT Press.

41. van Hassel, H., Guez, A., & Silver, D. (2016). Deep Reinforce-
ment Learning with Double Q-learning. In: Proceedings of the
Thirtieth AAAI Conference on Artificial Intelligence (pp. 2094–
2100). Phoenix: AAAI.

Pedro Veloso Veloso is a computational designer, educator, and researcher
interested in design exploration methods supported by different modes of
artificial intelligence, such as classical AI, bio-inspired AI, agent-based
modeling, and machine learning. He has completed Bachelor of Architecture
and Urbanism from the University of Brasilia. He has completed Master of
Architectural Design from the University of Sao Paulo. Currently, he is a
PhD candidate in Computational Design at Carnegie Mellon University,
investigating generative design and the development of interactive systems
with learning techniques.

Ramesh Krishnamurti Krishnamurti is a full professor in the School of
Architecture at Carnegie Mellon University. He has a BE (Honors) in
Electrical Engineering from the University of Madras, a BA in Computer
Science from the University of Canberra, and MASc and PhD in Systems
Design from the University of Waterloo. His principal area of research is
computational design with emphasis on the formal, semantic, and algo-
rithmic aspects of generative construction and development of design as
computation via highly coupled parallel explorations of form and descrip-
tion. He is perhaps best known for his work on computational problems in
shape grammar theory and algorithms for spatial patterns.

276 P. Veloso and R. Krishnamurti

https://doi.org/10.1016/j.foar.2016.11.003
https://mathworld.wolfram.com/vonNeumannNeighborhood.html
https://mathworld.wolfram.com/vonNeumannNeighborhood.html

	24 Self-learning Agents for Spatial Synthesis
	Abstract
	1 Introduction
	1.1 Interactive Generative Workflows
	1.2 Multi-agent Space Planning
	1.3 Gap in Multi-agent Space Planning
	1.4 Spatial Synthesis with Self-learning Agents

	2 Development
	2.1 Grids as Representation of Space and Information
	2.2 Spatial Representation of Environment and Agents
	2.3 Action Space of Agents
	2.4 Spatial Objectives
	2.5 Learning a Policy

	3 Results
	4 Future Steps
	Acknowledgements
	References

